^^^^^
i was worried when i heard all this talk about a room being "too small" for a sub - b/c my studio is pretty small and i was wanting to get one - but then i found this article, and apparently the too small thing is a myth. heres an exerpt:
" BIG WAVES, SMALL ROOMS
There is a common myth that small rooms cannot reproduce low frequencies because they are not large enough for the waves to "develop" properly. While it is true that low frequencies have very long wavelengths - for example, a 30 Hz wave is nearly 38 feet long - there is no physical reason such long waves cannot exist within a room that is much smaller than that. What defines the dimensions of a room are the wall spacing and floor-to-ceiling height. Sound waves generated within a room either pass through the room boundaries, bounce off them, or are absorbed. In fact, all three of these often apply. That is, when a sound wave strikes a wall some of its energy is reflected, some is absorbed, and some passes through to the other side.
When low frequencies are attenuated in a room, the cause is always canceling reflections. All that is needed to allow low frequency waves to sound properly and with a uniform frequency response is to remove or at least reduce the reflections. A popular argument is that low frequencies need the presence of a room mode that's low enough to "support" a given frequency. However, modes are not necessary for a wave to exist. As proof, any low frequency can be produced outdoors - and of course there are no room modes outdoors!
Here's a good way to understand this: Imagine you set up a high quality loudspeaker outdoors, play some low frequency tones, and then measure the frequency response five feet in front of the speaker. In this case the measured frequency response outdoors will be exactly as flat as the loudspeaker. Now wall in a small area, say 10x10x10 feet, using very thin paper, and measure the response again. The low frequencies are still present in this "room" because the thin paper is transparent at low frequencies and they pass right through. Now, make the walls progressively heavier using thick paper, then thin wood, then thicker wood, then sheet rock, and finally brick or cement. With each increase in wall density, reflections will cause cancellations within the room at ever-lower frequencies as the walls become massive enough to reflect the waves.
Therefore, it is reflections that cause acoustic interference and standing waves, and those are what affect the level of low frequencies produced in a room. When the reflections are reduced by applying bass traps, the frequency response within the room improves. And if all reflections could be removed, the response would be exactly as flat as if the walls did not exist at all."
the rest of the article is at
http://www.realtraps.com/facts.htm , an interesting read for this topic